

Distributed Training @ Facebook

Mohamed Fawzy, Kutta Srinivasan

AI Infrastructure

Agenda

- ML @ Facebook scale
- The role of Distributed Training
- Challenges & Solutions

ML @ FB Scale (Mohamed's slides go in this section)

Why Distributed Training?

Improve ML Productivity

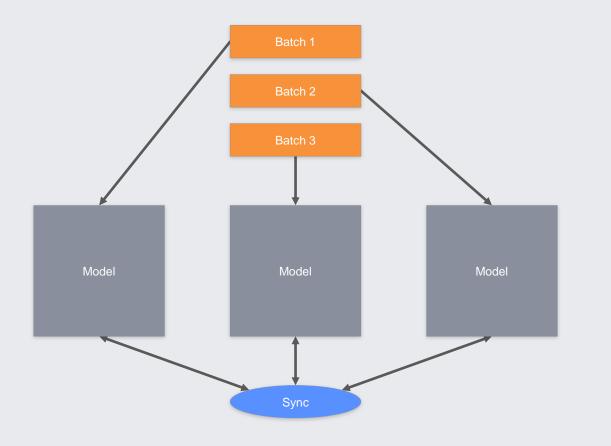
- Complex models train on multi-PB datasets
- Would take **years** to run on single machine
- Data-parallelism to the rescue

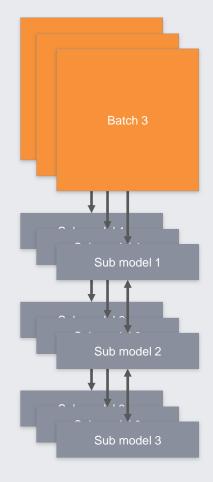
Support Huge Scale

- Sparse architectures for ranking, personalization, language
- Range from 100s of $GB \rightarrow TBs$ per model
- Both model- and data-parallelism required

Data Parallelism

Model Parallelism + Data Parallelism

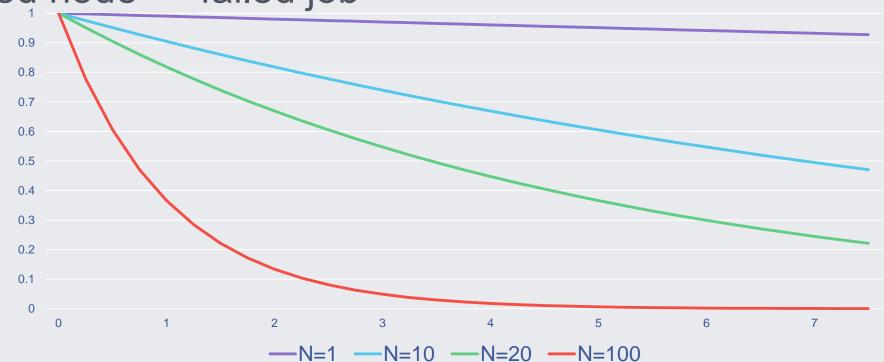




Distributed Training is HARD

Inherently less reliable

- Gang scheduling means resources are required all-ornothing
- Failed node \rightarrow failed job Gang Job Reliablity



Heterogeneous Hardware

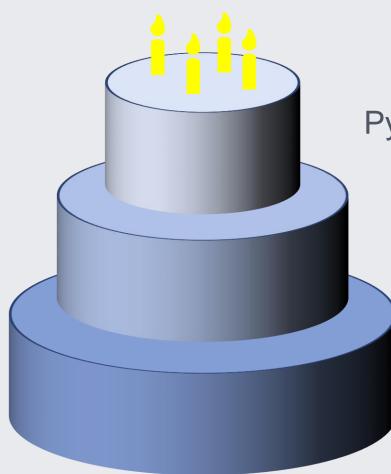
- HPC workloads sensitive to hardware types, generations
 - Scheduling more complex than just {x GB RAM, y CPU} per task
 - Multiple gen GPUs, CPUs, ASICs

Expensive & Experimental

- Unlike data pipelines, majority of ML jobs are ad hoc
 - Long running jobs complicate demand prediction & control
- Cost & efficiency
 - ROI for jobs hard to estimate
 - Sub-linear scaling + huge scale = easy to waste resources

Affordable Productivity is the Goal

A Layered Solution



PyTorch Elastic Distributed Training

ML-Aware Cluster Scheduling

Elastic Compute (Spot Instances)

PyTorch Elastic Distributed Training

- Fault tolerance for failed nodes
 - For transient errors, re-sync workers and keep going
 - Jobs don't need baby-sitting
- Auto-scaling
 - Start fewer nodes under resource contention, adjust hyper params^{[1][2]}
 - Eliminate bottlenecks, improve utilization

[1] <u>https://arxiv.org/abs/1706.02677</u> [2] <u>https://openreview.net/pdf?id=B1Yy1BxCZ</u>

Elastic Training Pseudocode

while not finished:

discover peers, use rank and size to update model hyperparams
rank, size = rendezvous(min_nodes, max_nodes)
sync_model(rank, size) # most tenured worker broadcasts state
while not finished:

try:

train_step() # forward/backward pass + allreduce
except TransientError:

break # allreduce will raise if any worker fails

```
if detect_new_workers():
```

break # allow job to scale up if new workers arrive

ML-Aware Cluster Scheduling

Maximize throughput & utilization

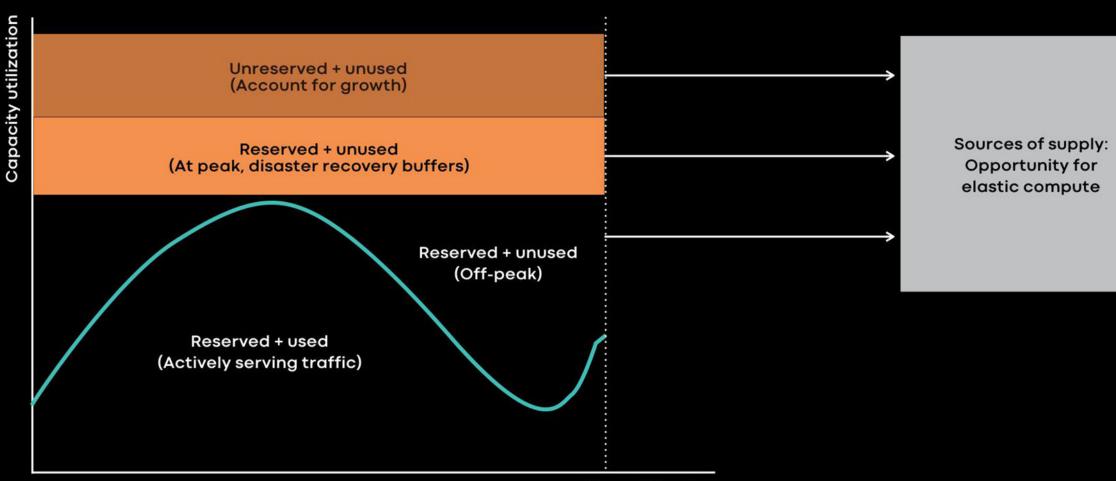
- Subject to quota & priority constraints
- Allow users to **borrow** unused resources; **evict** to reclaim
- Ongoing work
 - Gang-awareness for draining, preemption
 - **Time-slicing** jobs for improved fairness
 - Globally **federated** scheduling for efficiency & DR

Elastic Compute

- FB uses power-efficient servers w/autoscaling^[3]
 - Significant capacity available off-peak
- Idle machines for growth & DR buffers
- Think "Spot Instances"

[3] <u>https://engineering.fb.com/data-center-engineering/tupperware/</u>

Sources for Elastic Compute



Time of the day

Sources of Elastic Capacity [OPTIONAL]

Buffer capacityML goes here!Off-peak idle capacity

Actively used capacity

Time \rightarrow

Elastic Compute Challenges

- Machines reclaimed at anytime by donor service
- End-to-end job latency higher on off-peak
- Primarily useful for CPU workloads

Conclusion

- Distributed Training key to pushing state-of-the-art ML modeling
- "Affordable Productivity" a key focus of Al Infrastructure @
 FB
- Investments required across entire stack

mfawzy@fb.com kutta@fb.com