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Å ML @ Facebook scale 

Å The role of Distributed Training 

Å Challenges & Solutions 
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ML @ FB Scale  

(Mohamedôs slides go in this section) 



Why Distributed Training? 



ÅComplex models train on multi-PB datasets 

ÅWould take years to run on single machine 

ÅData-parallelism to the rescue 

Improve ML Productivity 



ÅSparse architectures for ranking, personalization, language 

ÅRange from 100s of GB Ÿ TBs per model 

ÅBoth model- and data-parallelism required 

Support Huge Scale 
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Distributed Training is HARD 



ÅGang scheduling means resources are required all-or-

nothing 

ÅFailed node Ÿ failed job 

Inherently less reliable 
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ÅHPC workloads sensitive to hardware types, generations 

ÅScheduling more complex than just {x GB RAM, y CPU} per task 

ÅMultiple gen GPUs, CPUs, ASICs 

Heterogeneous Hardware 



ÅUnlike data pipelines, majority of ML jobs are ad hoc 

ÅLong running jobs complicate demand prediction & control  

ÅCost & efficiency 

ÅROI for jobs hard to estimate 

ÅSub-linear scaling + huge scale = easy to waste resources 

 

 

Expensive & Experimental 



Affordable Productivity is the Goal 



A Layered Solution 

PyTorch Elastic Distributed Training 

ML-Aware Cluster Scheduling 

Elastic Compute (Spot Instances) 



ÅFault tolerance for failed nodes 

ÅFor transient errors, re-sync workers and keep going 

ÅJobs donôt need baby-sitting 

ÅAuto-scaling 

ÅStart fewer nodes under resource contention, adjust hyper 

params[1][2] 

ÅEliminate bottlenecks, improve utilization 

PyTorch Elastic Distributed Training 

[1] https://arxiv.org/abs/1706.02677 [2] https://openreview.net/pdf?id=B1Yy1BxCZ 

https://arxiv.org/abs/1706.02677
https://openreview.net/pdf?id=B1Yy1BxCZ


while not finished:  

 # discover peers, use rank and size to update model hyperparams  

 rank, size = rendezvous( min_nodes, max_nodes)  

 sync_model (rank, size) # most tenured worker broadcasts state  

 while not finished:  

  try:  

   train_step () # forward/backward pass + allreduce  

  except TransientError :  

   break # allreduce  will raise if any worker fails  

  if detect_new_workers ():  

   break # allow job to scale up if new workers arrive  

 

Elastic Training Pseudocode 



ÅMaximize throughput & utilization 

ÅSubject to quota & priority constraints 

ÅAllow users to borrow unused resources; evict to reclaim 

ÅOngoing work 

ÅGang-awareness for draining, preemption 

ÅTime-slicing jobs for improved fairness 

ÅGlobally federated scheduling for efficiency & DR 

ML-Aware Cluster Scheduling 



ÅFB uses power-efficient servers w/autoscaling[3] 

ÅSignificant capacity available off-peak 

ÅIdle machines for growth & DR buffers 

ÅThink ñSpot Instancesò 

Elastic Compute 

[3] https://engineering.fb.com/data-center-engineering/tupperware/ 

https://engineering.fb.com/data-center-engineering/tupperware/
https://engineering.fb.com/data-center-engineering/tupperware/
https://engineering.fb.com/data-center-engineering/tupperware/
https://engineering.fb.com/data-center-engineering/tupperware/
https://engineering.fb.com/data-center-engineering/tupperware/



