
INFRASTRUCTURE

AI Infrastructure

Distributed Training @ Facebook

Mohamed Fawzy, Kutta Srinivasan

Å ML @ Facebook scale

Å The role of Distributed Training

Å Challenges & Solutions
Agenda

ML @ FB Scale

(Mohamedôs slides go in this section)

Why Distributed Training?

ÅComplex models train on multi-PB datasets

ÅWould take years to run on single machine

ÅData-parallelism to the rescue

Improve ML Productivity

ÅSparse architectures for ranking, personalization, language

ÅRange from 100s of GB Ÿ TBs per model

ÅBoth model- and data-parallelism required

Support Huge Scale

Model Model Model

Batch 3

Batch 1

Batch 2

Sync

Data Parallelism

Sub model 1

Sub model 2

Sub model 3

Batch

Model Parallelism

Sub model 1

Sub model 2

Sub model 3

Batch 2

Sub model 1

Sub model 2

Sub model 3

Batch 3

+ Data Parallelism

Distributed Training is HARD

ÅGang scheduling means resources are required all-or-

nothing

ÅFailed node Ÿ failed job

Inherently less reliable

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

Gang Job Reliablity

N=1 N=10 N=20 N=100

ÅHPC workloads sensitive to hardware types, generations

ÅScheduling more complex than just {x GB RAM, y CPU} per task

ÅMultiple gen GPUs, CPUs, ASICs

Heterogeneous Hardware

ÅUnlike data pipelines, majority of ML jobs are ad hoc

ÅLong running jobs complicate demand prediction & control

ÅCost & efficiency

ÅROI for jobs hard to estimate

ÅSub-linear scaling + huge scale = easy to waste resources

Expensive & Experimental

Affordable Productivity is the Goal

A Layered Solution

PyTorch Elastic Distributed Training

ML-Aware Cluster Scheduling

Elastic Compute (Spot Instances)

ÅFault tolerance for failed nodes

ÅFor transient errors, re-sync workers and keep going

ÅJobs donôt need baby-sitting

ÅAuto-scaling

ÅStart fewer nodes under resource contention, adjust hyper

params[1][2]

ÅEliminate bottlenecks, improve utilization

PyTorch Elastic Distributed Training

[1] https://arxiv.org/abs/1706.02677 [2] https://openreview.net/pdf?id=B1Yy1BxCZ

https://arxiv.org/abs/1706.02677
https://openreview.net/pdf?id=B1Yy1BxCZ

while not finished:

 # discover peers, use rank and size to update model hyperparams

 rank, size = rendezvous(min_nodes, max_nodes)

 sync_model (rank, size) # most tenured worker broadcasts state

 while not finished:

 try:

 train_step () # forward/backward pass + allreduce

 except TransientError :

 break # allreduce will raise if any worker fails

 if detect_new_workers ():

 break # allow job to scale up if new workers arrive

Elastic Training Pseudocode

ÅMaximize throughput & utilization

ÅSubject to quota & priority constraints

ÅAllow users to borrow unused resources; evict to reclaim

ÅOngoing work

ÅGang-awareness for draining, preemption

ÅTime-slicing jobs for improved fairness

ÅGlobally federated scheduling for efficiency & DR

ML-Aware Cluster Scheduling

ÅFB uses power-efficient servers w/autoscaling[3]

ÅSignificant capacity available off-peak

ÅIdle machines for growth & DR buffers

ÅThink ñSpot Instancesò

Elastic Compute

[3] https://engineering.fb.com/data-center-engineering/tupperware/

https://engineering.fb.com/data-center-engineering/tupperware/
https://engineering.fb.com/data-center-engineering/tupperware/
https://engineering.fb.com/data-center-engineering/tupperware/
https://engineering.fb.com/data-center-engineering/tupperware/
https://engineering.fb.com/data-center-engineering/tupperware/

